-x^2+27=(x-4)(x-3)

Simple and best practice solution for -x^2+27=(x-4)(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -x^2+27=(x-4)(x-3) equation:



-x^2+27=(x-4)(x-3)
We move all terms to the left:
-x^2+27-((x-4)(x-3))=0
We add all the numbers together, and all the variables
-1x^2-((x-4)(x-3))+27=0
We multiply parentheses ..
-1x^2-((+x^2-3x-4x+12))+27=0
We calculate terms in parentheses: -((+x^2-3x-4x+12)), so:
(+x^2-3x-4x+12)
We get rid of parentheses
x^2-3x-4x+12
We add all the numbers together, and all the variables
x^2-7x+12
Back to the equation:
-(x^2-7x+12)
We get rid of parentheses
-1x^2-x^2+7x-12+27=0
We add all the numbers together, and all the variables
-2x^2+7x+15=0
a = -2; b = 7; c = +15;
Δ = b2-4ac
Δ = 72-4·(-2)·15
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-13}{2*-2}=\frac{-20}{-4} =+5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+13}{2*-2}=\frac{6}{-4} =-1+1/2 $

See similar equations:

| 17/2=x/6 | | 7^{x}=58 | | 3x+78+78=180 | | 5v+9=12 | | 162=7x+4 | | f(5)=-2*5+7 | | Y=4x2-56x+204 | | -3d-13=17 | | (x−5)/2=−10 | | 2x+125+x+163=38° | | -3h+8=-7-6+4h | | 7x+4=162 | | (2x-10)=(5x+16) | | 12/16=2/a | | –2x+19=–2x+ | | 43.5=9.1+x | | 2x−4(−7−x)=10 | | d-733=-501 | | w−5=8 | | -11x-216=8x+126 | | 4-7x=64 | | x-33.4=20 | | -6.59+5z=6.2z+4.57 | | .3.2+x=5.5 | | x^2+3^2=45 | | (x-12)-7=-133 | | –6h−9=–9−6h | | 3.5m=24.5;m=21 | | x+7x+10=180 | | -h+5=13 | | p/14+6=7 | | 7(c–4)=35 |

Equations solver categories